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1. Introduction 

 

Music has always been present in the lives of human beings, both individually and 

socially, through the cultural, professional, leisure or religious aspects of life. Music is 

a way by which composers express their innermost feelings. As a means of 

celebration, music has always accompanied man’s festive moments. In the expression 

of human religiosity, music has always been regarded as a form of prayer. In sport 

activities, music can be used to keep an athlete motivated. Recently, music is being 

approached as an aid for the therapy of nervous disturbances or even for the 

improvement of student performance. Music is associated to the most marking 

moments of our life, brings us memories, arouses emotions, it is part of our individual 

and social imaginary. 

 For the reasons appointed, music plays an important role in the balance and 

development of world economy. In fact, the music industry runs, only in USA, an 

amount of money in the order of several billion dollars per year [Pampalk, 2001]. 

 As a result of recent technological innovations, there has been a tremendous 

growth in the Electronic Music Distribution (EMD) industry. Factors like the 

widespread access to the Internet, bandwidth increasing in domestic accesses or the 

generalized use of compact audio formats with CD or near CD quality, such as mp3, 

have given a great contribution to that boom. Presently, it is expected that the number 

of digital music archives, as well as their dimension, grow significantly in the near 

future, both in terms of music database size and in number of genres covered. This 

situation poses new and exciting challenges. 

 

1.1. Motivation 

  



In spite of the growth of digital music libraries, any large music database, or, 

generically speaking, any multimedia database, is only really useful if users can find 

what they are seeking in an efficient manner. Furthermore, it is also important that the 

organization of such a database can be performed as objectively and efficiently as 

possible. 

 Presently, whether it is the case of a digital music library, the Internet or any 

music database, search and retrieval is carried out mostly in a textual manner, based 

on categories such as author, title or genre. This approach leads to a certain number of 

difficulties, both for service providers and general users, namely in what concerns 

music labeling or database search in a transparent and intuitive way, respectively. 

 Therefore, some efforts are now being conducted in order to make it possible 

to search music databases by content similarity [Logan and Salomon, 2001; Yang, 

2001; Welsh et al, 1999]. In those systems, the goal is to allow the creation of musical 

queries through examples given by the user, e.g., by humming the melody to search 

for, or by specifying a song in some way similar to what is being looked for, in terms 

of certain searching criteria (theme, rhythm, genre, instrumentation, etc.). This 

approach can be very useful when users do not know or are not especially interested 

in the melody. Namely, an aerobic instructor can look for songs with a certain tempo 

or a truck driver can look for a song that keeps him alert [Huron, 2000], regardless of 

the melody or genre. This can be a daunting task if we think of the thousands or even 

millions of songs, organized sometimes in tens or hundreds of different and often 

non-uniform genres that many music libraries contain. 

Another objective is to simplify the task of organizing musical databases via 

automatic classification systems, where similar songs may be found close to each 

other [Tzanetakis et al, 2001; Pampalk, 2001; Golub, 2000]. Such systems should 

overcome the limitations resulting from manual song labeling, which may be a highly 

time-consuming and subjective task. 

 

 

1.2. Application Areas 

 

Digital musical content analysis has a broad range of applicability, in spite of 

addressing several difficult and still open problems.  



Regarding EMD, music web crawlers, which “traverse the web and index 

music-related files” [Huron, 2000], are applications with an enormous potential. Also, 

automatic classification systems should be extremely useful for the labeling and 

updating of huge music databases, as well as tool for content-based retrieval, as stated 

before. This also applies for multimedia databases and operating systems. 

Besides the possibilities for EMD, systems for education and training can also 

gain from the results attained. For example, systems for automatic music transcription 

[Bello et al, 2000; Martin, 1996; Ellis, 1996] may simplify tasks such as manual 

transcription, music composition, music analysis or evaluation of musical 

performance. Also, professional composers may find useful tools that help detecting 

plagiarism.  

People at Indiana University have been working on a project for creating a 

digital music library [Dunn, 2000]. The referred project, VARIATIONS, addresses 

both technical issues, such as content-based information retrieval, and educational 

ones, such as learning activities for music instruction and evaluation of learning 

impact, supported by the library. 

Additionally, audio editors or audio browsers could become more intelligent 

with tools for automatic indexing of music/audio files [Wold et al, 1996].  

Also, in cinema or advertising industries, it is often necessary to search for 

songs that induce a certain mood to the intended audience [Huron, 2000].  

Video indexing and searching can gain a lot from music content analysis and, 

more generally, from audio content analysis. Instead of looking at image frames, 

audio frames can be analyzed. This is a much more efficient way to detect scene 

transitions, fundamental to video indexing. Furthermore, it can be useful to perform 

video segmentation. For example, romantic scenes (love inspiring song) or violence 

(shots, screams) can be detected by looking only at audio information  [Pfeiffer et al, 

1996]. 

 

 

1.3. Research & Development Projects 

 

The field of music information retrieval has received recently a great amount of 

interest both from academia and industry. In fact, many research laboratories all over 

the world have set up research agendas in this area, e.g., MIT Media Lab, “Institut the 



Recherche et Coordination Acoustique/Music” (IRCAM) in Paris, Center for 

Intelligent Information Retrieval (CIIR) at University of Massachusetts, Center for 

Computer Research in Music and Acoustics (CCRMA) at Stanford University, King’s 

College London (KCL) and many others. There are also some large-scale joint 

projects going on, like for example, OMRAS (Online Music Recognition and 

Searching), started in 1999, between CIIR and KCL. This project’s main goal “is to 

build a working prototype of a system, OMRAS, for content-based search of online 

music databases via an intuitive interface that uses music in a visual or aural form 

familiar to the user […] for both search-query construction and to display results” 

[OMRAS, 1999]. It encompasses many of the greater tasks necessary in any music 

retrieval system, such as usability, music representation, searching and search-surface 

reduction, type conversion, query construction and audio recognition. Furthermore, 

this project was the main catalyst for the ISMIR (International Symposium on Music 

Information Retrieval) conference, organized yearly since 2000, which was the first 

conference to congregate many of the most active researchers in the field. 

In industry, there is an increasing number of commercial products like, for 

instance, Intelliscore from Innovative Music Systems, which aims at converting 

polyphonic music recordings to midi format [PRWeb, 2000]. Despite its usefulness 

for simple polyphonic music, results are still limited for “real-world” music. Also, 

Philips has developed a music recognition technology where users can receive 

information about songs they hear [Afterdawn, 2002]. Basically, users send their 

queries from a cell phone, putting it in front of the speaker for three seconds. Then, 

they receive an SMS with the song’s name, artist, album, etc. Philips plans to start 

licensing this technology by the end of the year.  

Additionally, there are some cooperation projects between academia and 

industry like, for instance, CUIDADO, which is a European project started in 2000 

that “tackles the problems of information overload and the inability to quick browse 

audio or search for similarities among songs” [CUIDADO, 2000]. The main goal of 

that project is to develop technologies for content-based music analysis using MPEG-

7. Partners are IRCAM (Paris, France), Ben-Gurion University (Israel), Oracle 

(Spain), Cream@ware (Germany), Sony Computer Science Laboratory (Paris, 

France), Pompeu Fabra University (Barcelona, Spain) and ArtsPages (Norway).  

  

 



2. General System Architecture 
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Figure 1. General System Architecture. 

 

A general system for music retrieval is depicted in Figure 1, adapted from [Chai, 

2001]. The architecture presented is a typical client-server one, suited for web-based 

applications, as it is the usual situation in music retrieval. However, such a general 

architecture can be easily adapted, for example, for standalone applications or music 

retrieval in local file systems or distributed databases. Below, an overview of the main 

tasks performed by both client and server will be described. 

 

  

2.1. The Client-Side 

 



The client-side of a music retrieval system is responsible for supporting the creation 

of musical queries to be sent to the server, as well as for the presentation of the results 

obtained. 

 When users are searching for songs, either they know what they want, e.g., 

song title, artist or genre, where a traditional text-based search is enough, or they want 

to find songs based on content similarity. They could also search for a song based on 

lyrics or other criteria. 

In the case of searching by similarity, it must be possible for users to build 

their queries in an intuitive and interactive way [OMRAS, 1999]. One of the most 

intuitive ways to search music databases is by humming or singing some melody at 

the microphone, i.e., query-by-singing (QBS) or query-by-humming (QBH) [Chai, 

2001; Bainbridge et al, 1999]. Another way of specifying the query is by selecting a 

song file, typically an mp3 file, similar to the desired song or songs in some way, e.g., 

rhythm, melody or genre, i.e., query-by-example (QBE) [Logan and Salomon, 2001; 

Yang, 2001; Welsh et al, 1999]. It is easy to notice that QBH and QBS can be 

regarded as particular cases of QBE. Either way, the client is responsible for building 

a query signature, which is sent to the server and then compared to the signatures 

present in the database, in the server-side. 

Regarding QBH / QBS, the main task of the client application is to extract the 

sequence of notes hummed or its melodic contour, i.e., the sequence of note 

transitions (up, down, equal) [Chai, 2001], especially suited for 

transposition-invariant searches [Lemström and Perttu, 2000]. In fact, many people 

can sing the same melody in different keys, e.g., “Happy Birthday”, and the search 

engine should respond adequately (this point will be addressed later on, when the 

server-side is described). Also, rhythmic information should be captured [Chai, 2001], 

since two songs can be equal in terms of note sequence but differ in beat and tempo. 

In order to make the query as precise and robust as possible, its construction should 

also be interactive [OMRAS, 1999]. Namely, the notes extracted should be shown in a 

score, so that the user could evaluate and correct the sequence extracted by the 

application. The same applies if a melodic contour is extracted. Additionally, it should 

be possible to listen both to the songs hummed and to the notes extracted. Needless to 

say that any query could be reformulated if users are not satisfied with their own 

performance or the results obtained. 



As for QBE, similarity criteria should defined by individual users. This can be 

accomplished by creating an interface where users are able to select relevant criteria 

for their searches, as well as weights given to those criteria [Wold et al, 1996]. 

Queries could encompass higher-level criteria such as melody [Goto, 2001; Klapuri et 

al, 2000], rhythm [Tzanetakis et al, 2001; Scheirer, 1998], timbre [Tzanetakis et al, 

2001], loudness [Pampalk, 2001; Golub, 2000] or mood [Huron, 2000], as well as 

lower-level physical criteria such as energy, harmonicity, or bandwidth [Wold et al, 

1996]. The signature of the query can also be made up of statistical data such as mean, 

variance, maximum or minimum, as well as histograms of volume, frequency and so 

forth.  

Still regarding QBE, the system should also be extensible with user-defined 

concepts [Wold et al, 1996]. Methodologies for empirical learning, e.g., neural 

networks, could be applied to induce those concepts by means of training examples.  

Finally, the signature of the query is sent to the server, which returns the 

search results ranked by similarity. For example, if a user had sent a query regarding 

some Bossa-Nova song, he/she could have obtained a list like the one in Figure 1 

(visualization box). The server should also return a short summary for every song, 

which is useful for song recognition and validation of results [Huron, 2000].  

 

 

2.2. The Server-Side 

 

As for the server-side, the process starts with a set of raw music recordings, typically 

in mp3 format. Then, the server’s main task is to obtain a signature for each of the 

songs stored, as a basis for comparison with the queries sent by the client.  

The creation of signatures results from the necessity to obtain a meaningful 

representation from raw audio data. In fact, raw audio cannot be used directly for 

content analysis. For instance, it is not possible to look at a sequence of sample values 

and say, directly, what notes are present. Thus, it is essential to transform the crude 

information present in raw audio data into a meaningful representation suited for 

music content analysis.  

The referred representation must also allow for data reduction by eliminating 

any redundant information present in the song [Huron, 2000]. Namely, most songs 

have a chorus, which is repeated several times throughout the song. Thus, it is 



important to segment the song in its most relevant components, e.g., introduction or 

chorus, and to eliminate all repeated segments. Then, a signature is obtained for each 

of the final non-redundant segments. However, in most of the cases found in 

literature, the authors simply extract a signature for the whole song or segments at 

regular intervals, without taking in consideration the aspects referred above. For 

instance, in [Pampalk, 2001], Pampalk extracts segments by dividing every piece of 

music into six-second’s sequences and analyzing only every third segment. This is 

very useful for capturing different styles in music classification problems but does not 

work well for music summarization. 

After segmentation, the signatures are then obtained based on features 

extracted from each of the segments. Features can be temporal sequences of 

fundamental frequency, energy, zero-crossing rate and so on, as stated before. 

Additionally, statistical information can be obtained from those sequences. The 

process of feature extraction will be described later on. 

Based on the extracted features, each segment is then classified, typically in a 

genre hierarchy. In this situation, tools like neural networks, k-nearest neighbors, 

clustering techniques or support vector machines can be used, where classes such as 

jazz, baroque or pop are learned via training examples made up of such features. It is 

important to notice that segment classification rather than song classification can 

overcome some classification ambiguities in songs that encompass different styles. In 

this way, one song can be classified into several genres. This procedure can avoid 

many ambiguities in song labeling. 

The methodology for signature creation and song classification is applied to 

all songs in the server, and all signatures are stored in the database. This task is 

carried out offline while setting up a new system and when new songs are added to 

the database. Therefore, no real-time requirements are imposed, though temporal 

efficiency is desired. 

The situation is different when the server receives a query from a client. In 

fact, the signature of the query must then be compared with all signatures stored in the 

database. Clearly, a “world-wide-wait” is to be avoided and the system must give 

quick responses to the client.  In huge databases, this can be a difficult problem. That 

is one of the reasons why it is important that the signatures stored are as short as 

possible, while keeping their relevance. When melody is not a main issue, comparison 

can be simply performed by using a metric distance. In fact, in such queries, 



signatures consist typically of feature-vectors with information regarding statistical 

data extracted from temporal sequences [Wold et al, 1996]. However, in 

query-by-humming and query-by-singing, algorithms for string matching must be 

used in order to compare sequences [Lemström and Perttu, 2000], e.g., melodic 

contour or sequence of notes, possibly in different keys. Therefore, such algorithms 

must be highly efficient and optimized, so as to minimize server response time in 

transposition-invariant searches [Lemström and Perttu, 2000]. Additionally, the 

system must be robust and flexible regarding query imprecision, e.g., a few notes out 

of tune, non-uniform tempo and beat. Furthermore, other procedures for search 

optimization are very important, e.g., database indexing.  

Finally, the results are sent to the client, ranked by similarity, where the most 

similar song is the one containing the most similar segment. Additionally, song 

summaries are also sent, which are constructed using the segments obtained 

previously. As stated before, summaries are important for users, so that they can 

easily hear what the server returned and validate those results. One common and easy 

way of delivering summaries consists of getting only the incipit, i.e., “the initial few 

seconds” of the song [Huron, 2000]. This procedure is the same as in common web 

search engines, where the initial words from every page are returned.  However, it is a 

rather limited approach since many songs have introductions that are very different 

from the chorus [Huron, 2000]. Furthermore, many songs have very distinct passages, 

all of them relevant, which should be present in the summary. Thus, summaries based 

on song segmentation and redundancy elimination are more effective. In conclusion, 

song summaries are relevant both for server and server sides: as a way to optimize 

searches, in the server, and as a way to evaluate results, in the client. 

 

As mentioned previously, extracting adequate query signatures is a key issue for 

music classification and retrieval systems. In order to accomplish that goal, good 

features must be selected and extracted from audio data. This crucial aspect will now 

be addressed. 

  

 

3. Feature Extraction 

 



Content-based music analysis, or more generally audio analysis, relies heavily on 

feature extraction. In fact, raw audio gives no intelligible information, and so it is 

necessary to extract relevant information from it. Many features have been suggested 

recently and many other have been inherited from voice recognition research.  

 Before describing those features, it is important to know what characterizes a 

good feature. Intuitively, a good feature should carry meaningful information 

[Pampalk, 2001], such as melody, rhythm or timbre. Ideally the process of feature 

extraction should mimic the human brain. This has led to an attempt to apply 

psychoacoustics findings to the problem of music content analysis [Bregman, 1990; 

Slaney and Lyon, 1990]. However, many aspects of the behavior of the brain are still 

poorly understood. That is why some physical features, i.e., features extracted directly 

from data without perceptual concerns, can be useful, despite being less intuitive. 

They also have the advantage of being less costly in terms of computing time. 

 Below, some of the most relevant features for music content-analysis are 

described. 

 

 

3.1. Melody-Related Features 

 

When we think of music, melody is probably the first thing that comes to our heads. 

Therefore, it is intuitive to try to derive features that can somehow capture melody 

content from music signals. 

 

Fundamental frequency 

When we hear a song, it is amazing how our brains can distinguish instruments 

present and the melodic line followed by each of them (or, at least, part of it). In fact, 

in an orchestra we can try to follow the violins, flutes, trumpets and so on. Also, we 

can easily follow the global melodic line, instead of paying attention to particular 

instruments. However, no computer system can do anything similar yet.  

The main issues here are, therefore, i) to build computer systems that can 

extract the dominant frequency or fundamental frequency at any instant of time and ii) 

to isolate each audio stream present in a music signal, e.g., vocals, guitar, violin, a 

problem known as source separation. More generally, the goal is to detect pitch at any 

instance and for every stream.  



Often, pitch and fundamental frequency are used interchangeably, however, 

they are different concepts. Fundamental frequency is a physical variable that 

represent the base frequency present in harmonic sounds, i.e., sounds where all main 

frequencies present are multiple of a base frequency. Examples of harmonic sounds 

are the ones produced by most musical instruments, e.g., string or wind musical 

instruments. Inharmonic sounds often come from metallic objects, where the 

frequencies present are not multiple of a base frequency. Therefore, fundamental 

frequency is a physical variable. On the other hand, pitch is a perceptual variable that 

determines our individual perception of frequency. Pitch entails aspects like our 

brains’ response to frequency and intensity. For now, only fundamental frequency 

will be discussed. Pitch detection is discussed, e.g., in [Slaney and Lyon, 1990]. 

 There are presently hundreds of algorithms for fundamental frequency 

detection or estimation, many of them developed in the context of voice recognition 

research. However, most of them are only suited for monophonic music analysis, i.e., 

music with only one audio stream, such as folk music, “shower singing”, humming, 

etc. As for polyphonic music, i.e., music with several audio streams, such as pop 

music or orchestras, algorithms for dominant frequency detection or estimation are 

still in their infancy. 

 In a monophonic audio signal, the fundamental frequency is the smallest 

harmonic frequency present. To illustrate this concept, imagine a signal described by 

Eq. (1). That signal has a fundamental frequency at 200 Hz and third and fifth 

harmonics at 600 and 800 Hz, respectively. 

 

( ) ( ) ( ) 000000 2;200;1,5sin3sinsin)( fHzfAtAtAtAtx πωωωω ===++=  (1) 

 

 One of the most used tools for frequency analysis of discrete signals is the 

Discrete Fourier Transform (DFT) [Rabiner and  Schafer, 1978]. Through the DFT, 

signals are transformed from the time-domain to the frequency-domain, where their 

frequency spectrum, i.e., the range of frequencies covered, is showed up. The DFT for 

the signal in Eq. (1) is depicted in Figure 2. 

 



 

Figure 2. DFT of a simple signal. 

 

In the previous figure, the three frequencies present in the signal are clearly 

shown. However, what happens when we have a signal whose frequency content 

varies through time? The DFT is only suited for stationary signals, i.e., signals that 

always have the same frequency content. This calls for a windowed version of the 

DFT: the Short-Time Frequency Transform (STFT) [Rabiner and  Schafer, 1978]. 

Here, the main idea is to divide the signal into a set of time frames and calculate the 

DFT for each of those frames. Typically, frame length is around 20 ms, so that 

stationarity can be assumed. 

 Then, a simple algorithm for fundamental frequency detection would consist 

of performing STFT analysis for the signal and determining the fundamental 

frequency for each frame. Filter banks can be used to extend this approach by 

measuring signal energy in each frequency band. This technique tries to mimic the 

behavior of the inner ear, which acts also as a bank of filters. Therefore, this strategy 

is the most valuable one in terms of human audio perception.  

 Another possibility is to perform cepstral analysis [Rabiner and  Schafer, 

1978; Logan and Salomon, 2001]. In this technique, Fourier coefficients are first 

determined, then their logarithms are calculated and finally the inverse Fourier 



transform is applied to them. The result is a large peak at the frequency of the original 

signal. 

One other strategy consists of computing the autocorrelation function [Rabiner 

and  Schafer, 1978]. There, if a signal is periodic (or pseudo-periodic, i.e., “almost” 

periodic), its autocorrelation function will also be a periodic signal with the same 

period as the original one. Then, the period found will be equal to the distance 

between peaks. Alternatively, the average-magnitude difference function can be used, 

where the distance between valleys must be determined [Rabiner and  Schafer, 1978]. 

 As for polyphonic music, many more difficulties are present. To illustrate such 

difficulties, let’s look at the spectra resulting from playing middle C on a flute, piano 

and trumpet, in Figure 3 (adapted from [Davis, 2002]). 

 

 

Figure 3. Spectra of middle C played on a flute, piano and trumpet [Davis, 2002]. 

 



 In the previous figure, we can see that the same note played in different 

instruments originates very different spectra. In fact, flute is almost a pure tone (only 

a peak at the fundamental frequency), piano has clear peaks at the second and fourth 

harmonics and trumpet is the richer of the three instruments in terms of harmonic 

content. Also, there are overtones present, i.e., spectral components which are not 

multiple of the fundamental frequency (these overtones contribute to the particular 

timbre of each instrument). Now, if we imagine a song where those instruments are 

present, it is easy to conclude that the signal spectrum will be very complex, because 

of the interaction between fundamental frequencies, harmonics and overtones from 

each of them. So, extracting each audio streams or the dominant frequency is not an 

easy task any longer. 

Some efforts are being conducted in order to attack the problems of source 

separation and dominant frequency detection/estimation.  

Source separation is a major concern for polyphonic music analysis and 

automatic music transcription systems, and has no general solution yet. The human 

brain processes auditory information in a process called “auditory scene analysis” 

[Bregman, 1990]. As an attempt to replicate human behavior, some work has been 

carried out so as to develop computational auditory scene analysis systems. The 

results obtained are not yet very accurate and are only acceptable for simpler or 

well-constrained problems. Namely, Ellis [Ellis, 1996] tries to analyze a sound signal 

by means of competitive theories, where each of them proposes a combination of 

sounds that might produce the sound obtained. Sound source models are used as a 

basis for the proposed method. Bello et al [Bello et al, 2000] and Martin [Martin, 

1996] have used computational blackboard systems for simple automatic music 

transcription. The blackboard system is composed of a global database, where 

hypotheses are proposed and developed, a scheduler, which determines how 

hypotheses are developed, and knowledge sources, corresponding to experts. Scheirer 

[Scheirer, 2000] proposes a model based on perceptual issues, using dynamic 

clustering of comodulation data. In contrast to the other systems referred, this model 

is designed for analysis of complex music. Other models impose constraints in the 

number of instruments present or the harmonic interaction between them, as it is 

referred in [Goto, 2001]. 

Dominant frequency detection/estimation, possibly a less difficult problem, 

consists of detecting only the main melodic line in a song. For instance, when we hear 



a pop song, we have vocals, guitar, bass, percussion and so forth. Yet, in spite of all 

that information, our brains still can retain the main melodic line. Klapuri et al 

[Klapuri et al, 2000] proposed a method for predominant pitch estimation where the 

musical signal is analyzed at separate frequency bands. Namely, 18 logarithmic 

distributed bands from 50 Hz to 6 kHz are used. Then at each band, a fundamental 

frequency likelihood vector is calculated. Finally, the results from each band are 

combined to yield global pitch likelihoods. They report results that outperform the 

average of ten trained musicians. Goto [Goto, 2001] uses a probabilistic model for the 

detection of melody and bass lines. The signal is first band-pass filtered and then a 

probability density function (PDF) is computed for each signal component. The PDFs 

are generated from a weighted-mixture model of tone models of all possible 

fundamental frequencies. The more dominant a model is in the PDF, the more likely 

the fundamental frequency belongs to that model. The author compared the dominant 

frequencies extracted with hand-labeled marked notes and reports an average rate of 

88.4% for the melodic line. 

 

Tonal Histograms and Transitions 

The frequency content of a music signal can also be analyzed by means of 

tonal histograms and transitions. In [Welsh et al, 1999], histograms of frequency 

amplitudes across the notes of the Western music scale are proposed. This 

information can be used to detect dominant chords, as well as the key where the song 

is played in. 

The same authors suggest tonal transitions for QBE. Basically, music signals 

can be seen as sequences of frequency transitions over time. Therefore, they propose 

an extractor that measures the number of tonal transitions in a given frequency range 

for ten seconds’ samples. There, five feature-vectors are obtained, each of them 

containing 306 values.  

 

Zero-Crossing Rate   

Measuring the zero-crossing rate (ZCR) in an audio signal consists of counting the 

number of times the sound wave crosses the zero axis [Rabiner and  Schafer, 1978]. 

Thus, this feature gives frequency-related information. Namely, a high ZCR indicates 

a signal with high-frequency content, whereas a low ZCR suggests the opposite. 



 ZCR is a feature imported from voice recognition systems.  In fact, it has been 

used there as a robust measure to detect unvoiced speech. Also, in general audio 

classification, it has been used for music/speech discrimination [Wold et al, 1996]. 

 Regarding music content analysis, ZCR-based features, namely statistical 

ones, are present in feature-vectors for music signal classification. 

 

 

3.2. Rhythm-Related Features 

 

Melody is normally regarded as the most important feature in music retrieval tasks. 

However, as was referred previously, rhythm is also important for query matching. 

Furthermore, rhythmic information is essential for music genre classification. In fact, 

the same melody can be performed according to many different styles, as it is often 

the case of song versions. On the other hand, rhythm is a very important attribute for 

music genre classification [Pampalk, 2001]. 

 Rhythm analysis encompasses aspects such as beat and tempo analysis, which 

are described below. 

 

Beat and Tempo 

Regarding beat and tempo analysis, the main idea is to find periodicities in the signal 

amplitude envelope.  

In [Tzanetakis et al, 2001], a bank of filters is used to divide the signal into a 

number of bands, each of them representing an octave. Then, the amplitude envelope 

of the signal at each band is extracted, by means of full wave rectification, low pass 

filtering and downsampling. Next, the envelopes at each band are summed up. 

Finally, periodicities are detected by finding peaks in the envelope autocorrelation 

function. 

In [Scheirer, 1998], a filterbank is also used, which divides the signal into six 

bands. For each band, the amplitude envelope is calculated, as well as its derivative. 

Next, each of the derivatives is passed to a set of comb filter resonators, where only 

one of them will phase-lock. The output of those resonator filterbanks is then summed 

across the frequency bands. Then, the energy output from each resonator channel is 

examined. The tempo of the signal is selected as the frequency of the resonator with 



the maximum energy output. Finally, beats are detected by looking back to the peak 

phase points in the phase-locked resonators. 

 

Energy 

Signal energy, also called volume, is also useful for rhythmic analysis. In fact, signal 

energy can be used as a basis for amplitude envelope extraction. 

Energy is obtained by computing the sum of squares of signal amplitude 

values for each frame [Rabiner and  Schafer, 1978]. This feature has been largely used 

in voice recognition systems for silence detection and voiced/unvoiced speech 

discrimination. 

Loudness is the perceptual correspondent to volume [Pampalk, 2001]. As it 

was the case with fundamental frequency and pitch, volume and loudness are 

sometimes used interchangeably. As before, loudness is a perceptual variable that 

determines our individual perception of volume. Loudness involves issues like our 

brains’ response to frequency and intensity and will not be discussed now.  

 

 

3.3. Timbre-Related Features 

 

Besides rhythm, the instruments present in a song are also important for genre 

classification. For instance, rhythm & blues is a variation of blues that gets its identity 

from the massive presence of brass instruments  [Pachet and Cazaly, 2000]. 

 Instrument detection must be grounded in timbre analysis. Physically 

speaking, timbre is a feature related to the sound wave. This idea is illustrated in 

Figure 4 (extracted from [Davis, 2002]), where sounds waves for middle C played on 

a flute, piano and trumpet are depicted. 

 



 

Figure 4. Sound waves of middle C played on a flute, piano and trumpet [Davis, 

2002]. 

 

As can be seen, the same note has a different “color” or “texture” for each 

instrument. This is also reflected in the spectral content, shown previously in Figure 3. 

Therefore, timbre has much to do with a signal’s harmonic content. The number of 

harmonics and overtones present, as well as their intensity, strongly influence the 

richness of the sound. 

Deriving perceptually-inspired features for capturing timbre from an audio 

signal is not a trivial task. Some physical features such as harmonicity, uniformity and 

others were suggested and are described below.  

 

Harmonicity 

Harmonicity is a physical feature that tries to derive timbre information from the 

analysis of harmonics present in an audio signal [Welsh et al, 1999]. 

 Once again, this is a rather complex task for polyphonic music. In [Wold et al, 

1996], harmonicity is measured as the deviation of the signal’s spectrum from a 

perfectly harmonic spectrum. Tzanetakis et al [Tzanetakis et al, 2001] propose 

fundamental frequency histograms for the analysis of harmonic content. Another 



possible approach could be to measure the number and percentage of harmonic peaks 

in the spectrum. 

 In polyphonic signals, the harmonic content can be used as basis for 

measuring noise levels. The noise content of a music signal can be useful to 

discriminate between soft/aggressive songs, e.g., ambient songs or heavy metal 

[Welsh et al, 1999]. 

 

Uniformity 

Uniformity is a simpler approach for harmonic analysis. Here, energy levels in 

different frequency bands are calculated and their similarity is compared. In this way, 

highly pitched sounds, where most of the energy is concentrated in few frequency 

bands, can be distinguished from unpitched sounds, where energy is spread across 

more frequency bands [Golub, 2000]. 

  

Centroid 

Centroid is usually used as an indicator of signal brightness, i.e., “the higher 

frequency content of the signal” [Wold et al, 1996]. This feature is calculated as the 

energy-weighted mean of frequencies of the short-time Fourier magnitude spectra. 

 

Bandwidth 

This feature is used as a measure of the frequency range of the signal. It is computed 

as the “magnitude-weighted average of differences between the spectral components 

and the centroid” [Wold et al, 1996]. Bandwidth is equivalent to frequency standard 

deviation. 

 

Rolloff and Flux 

In [Tzanetakis et al, 2001], spectral rolloff and flux are suggested as a measure of 

spectral shape and change respectively, useful to capture features related to music 

texture and instrumentation. 

 

Low Energy 

In measuring the amount of bass in a song, it is useful to use a feature called low 

energy [Tzanetakis et al, 2001]. This feature consists of calculating the percentage of 

frames that have less energy than the average energy in all frames. 



 

 

3.4. Other Features 

 

For most of the features described, analysis can be conducted in three ways, as 

referred in [Golub, 2000]. 

The first method consists of deriving short-term features from raw audio data. 

This is the case of fundamental frequency estimation methods, for example. Analysis 

is performed in short-time windows, as it happens in STFT analysis. Therefore, such 

features consist of temporal trajectories of some meaningful variables. Trajectory 

variations are also obtained, e.g., by measuring signal derivates (first-differences) 

[Golub, 2000]. 

Based on such short-term features, medium-term or long-term features can be 

obtained. Here, statistical data such as means and standard deviations [Wold et al, 

1996], as well as histograms [Wold et al, 1996] are derived. What distinguishes 

medium from long-term features is the window size where the statistical analysis is 

performed. Clearly, the time window is wider for long-term features. 

 

 

4. Research Results and Open Problems 

 

The discipline of music information retrieval is still in its infancy. Most of the 

research conducted in this area deals with searching databases of MIDI songs, e.g., 

[Chai, 2001; Lemström and Perttu, 2000; Bainbridge et al, 1999]. This is a direct 

consequence of the difficulties posed by “real-world” music data, e.g., mp3 files.  

However, we are now assisting to a strong interest in the issues of searching 

and classifying audio music signals. Some systems for QBE, e.g., [Logan and 

Salomon, 2001; Yang, 2001; Welsh et al, 1999] and music classification and 

clustering, e.g., [Tzanetakis et al, 2001; Pampalk, 2001; Golub, 2000] have been 

developed. In those systems, different authors use different subsets of the features 

described above. Typically, feature-vectors are constructed with statistical data 

obtained from features such as cepstral coefficients, energy, ZCR, harmonicity, 

centroid, bandwidth, spectral rolloff or tonal transitions. 



Regarding classification, most results reported indicate 60 to 80% accuracy in 

relatively simple problems, where two to seven classes are separated (jazz, pop and 

classical music are the most common). Namely, Golub [Golub, 2000] refers an 

average classification accuracy of 77% in a problem involving two highly similar 

genres, 82% for three highly dissimilar genres and 64% for seven genres with 

different similarity levels. There, a database of 1714 songs was used. Classifiers 

evaluated were the generalized linear model, the multilayer perceptron and the 

k-nearest neighbors algorithm. 

As for QBE systems, evaluation is usually carried out by counting the average 

number of similar songs in the first 5, 10 or 20 in the list of results. Typically, a set of 

users is chosen to personally evaluate the results obtained. This is clearly a subjective 

metric, since similarity is a rather vague concept. In [Logan and Salomon, 2001], a 

database of over 8000 songs encompassing several genres is used. In order to evaluate 

the matches obtained, these were judged by two users. The results reported indicate 

that, in the first 5 matches returned by the system, on an average 2.5 are similar to the 

query. For the first 10 and 20, 4.7 and 8.2 are said to be similar, respectively.  

As stated before, the analysis carried out above is very subjective. 

Furthermore, results are not comparable since many different databases of songs are 

used. Regarding classification, empirical supervised learning is normally used to train 

music classifiers (one exception is [Pampalk, 2001], where clustering is performed, so 

that similar songs are found close to each other in a self-organizing map). Therefore, 

training examples must have been labeled previously. However, if we look at the 

taxonomies used in some music libraries, it is difficult to find any uniformity there. In 

fact, there are many semantic discrepancies in the classes defined, both in horizontal 

and vertical terms, i.e., the number of classes used (horizontal dimension) and the 

number of subclasses derived from them (vertical dimension) is very different. Also, 

the same song appears with different labels in different libraries. These and other 

problems are analyzed in [Pachet and Cazaly, 2000]. As a consequence, it is urgent to 

define standard test collections and benchmark problems, as well as a uniform 

taxonomy. This problem is the subject of the Workshop on the “Creation of 

Standardized Test Collections, Tasks and Metrics for Music Information Retrieval 

(MIR) and Music Digital Library (MDL) Evaluation”, to be held at the Second Joint 

Conference on Digital Libraries (JCDL’ 2002). 



As for QBH/QBS systems, the bulk of the research deals with databases of 

MIDI songs, as stated before. QBH/QBS systems for real-world music must be 

grounded on robust and accurate strategies for polyphonic music analysis, which is 

still an open problem. In the same way, systems for automatic wave-based music 

segmentation and summarization are still non-existent. 

 In conclusion, content-based classification and retrieval of music is a 

fascinating research problem, with a broad range of possible commercial applications. 

Nevertheless, we still have many years of hard research ahead, before robust and 

accurate products are available. 

 

 

List of Abbreviations 

 

DFT – Discrete Fourier Transform 

EMD – Electronic Music Delivery 

QBE – Query-By-Example 

QBH – Query-By-Humming 

QBS – Query-By-Singing 

STFT – Short-Time Fourier Transform 

ZCR – Zero-Crossing Rate 
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